BOSTON UNIVERSITY

BGBLZ
seToup

LneT-61x

zZ0/€9

a0z 1382 SL €% OH d g¢

JDINOSYEANS ANY >

ANY SDIWYNAQOSIY TYIDIAKT
INGSE0S  (BLgEn| ~4D-¥S¥a)

)
<
g
4
o
Z
i
¢
q
-3
7
g
<
=
o]

COLLEGE OF ENGINEERING

BQASTOM, MASSACHUSETTS



DEPARTMENT OF AERQSPACE ENGINEERING
BOSTON UNIVERSITY
COLLEGE CF ENGINEERING

BOSTON, MASS. 02215

SUBSONIC AND SUPERSONIC
INDICIAL ALERODYNAMICS AND
AERODYNAMIC TRANSFER FUNCTION

FOR COMPLEX CONFIGURATIONS
by

Luigi Morino

September 1974

Prepared for
LANGLEY RESEARCH CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

HAMPTON, VIRGINIA 23365

Under
NASA Grant NGR 22-004-030

E. Carson Yates, Jr., Technical Advisor

TN-74-01

‘,"-



- ii -

ABSTRACT

A general theory for indicial potential compressible
aerodynamics around complex configurations is presented.
The motion is assumed to consist of constant subsonic
or supersonic séeed for £t=0 (steady state) and of small
perturbations around the steady state for £ >0, Using
the finite-element method to discretize the space problem
one obtains a set of differential-difference eguations in
time relating the potential to its normal derivative on
the surface of the body. The aerodyvnamics transfer function
is then obtained by using standard method of operational

calculus.
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INTRODUCTION

Considered in this note is the problem of unsteady
subsonic and supersonic potential aerodynamics for an
aircraft having arbitrary shape. The motion of the
aircraft is assumed to consist of small perturbations
with respect to the constant speed motion. The objective
of fhis paper is to describe the time functional relation-
ship between aerodynamic potential and its normal derivative
Inormal—wash,Qza%@n) in a form which can be easily usead
for the flight-dynamics analysis in both time and frequency-
domain. The finite element method is used for space-
discretization.

The analysis presented here is based upon a new
integral formulation, derived by the authoirzwhich
includes completely arbitrary motion. However, the
numerical implementation (Refs. 3 and 4) is limited to
steady and oscillatory flows. On the other hand, in order
to perform a linear-system analysis of the aircraft it
is convenient to use more general aerodynamic formulations
i.e. fully transient response for time-domain analysis,-
and the aerodynamic transfer function (Laplace's transform
of the fully unsteady operator) for frequency-domain
analysis (see for instance Ref. 5). Consistently with

this type of analysis the unsteady contribution is assumed



to start at time t=0, so that for time t<0 the flow

;s in steady state. Furthermore the motion of the
aircraft is assumed to consist of small (infinitesimal)
perturbation around the steady state motion. Since the
initial work by Wagnerson unsteady incompressible two-
dimensional flow, several problems have been consideread.
Detailed analysis of the various methods available are
given for instance in Refs. 5 and 7. Finite wings can be
solved only for particular planform (such as elliptical
wings) for subsonic flows, and for general planform in
supersonic flows. Strip theory is used for slender wings
in subsonic flow.

For subsonic and supersonic flows around arbitrary
complex configurations no tool has been available for
either time- or frequency-domain analysis. Such a tool
is presented in this note, for both time and frequency
domain, For the sake of brevity, only the relationship
potential-downwash is outlined since the full transfer
function (generalized force per unit generalized coordinate)
can be easily obtained by including the relation downwash-
generalized coordinate (boundary conditions on the body)

and the relation between potential and generalized forces,



SUBSONIC INDICIAL AERODYNAMICS

Conzider the subsonic case first. Within the
small perturbation assumption, the motion of the surface
of the aircraft with respect to a frame of reference
traveling at uniform subsonic speed with respect to the
undisturbed air can be assumed to be negligible. Thus
the Green thecrem for the equation of the aerodynamic

1,2
potential is given by

4n E(P,) C?{?MT): (fﬁz [‘I}J@ dS 4

where Z. is a surface surrounding the body and the wake,

-

1.11 = 56}3 /aN is the normal derivative (normal-wash)c¢f >
—

on Z ‘ N is the normal to the surface E‘:,}

il 9 5 —_ .
é:éfiﬁdf X:-’C/‘Bi’—, {a’/‘?; ZZ-?/‘E) = “uiﬁ‘l'/{ (2)

R [(-X0% e (r-v e (z-2, 0] o
while

_ 0 (4)

—
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where —
o - M(x-x)+R (5)
is the time necessary for a disturbance to propagate

from P to P,. Furthermore

E - 1 outsice %
= 4/2 on 2
= 0 ingide 3. ‘ (61

In Eq. 1 the surface EE is assumed to be fixed with respect
to the frame of reference. However, the effect of the
motion of the surface is retained in the boundary condition,
which gives the normal-wash approximately as
g 22 . (: 28 25)//Vm
T e 2 - — = ~ |
ERY M 3T  ax // (7)
(where fi(?TT):C)is the equation of the surface 2, }.

This approximation is consisfent with the hypothesis of small
perturbation which has been invoked alsc in writing Egq. (1),
Also consistent with the hypothesis of small perturbation
with respect to the constant-speed motion, is the assumption
.that the surface of the wake is the one of the steady-state
case,

It may be noted that, because of the linearity of the
problem, the state-steady contribution can be subtracted
from Eqg, (1). Therefore in the following it is understood
that @’ and ¥ are the unsteady parts of the potential and
the downwash, which (in line with the concepts of operational

calculus) are assumed to be identically equal to zero

for T ¢ O



d=z0 Y=o (T <0) (8)
In order to understand the nature of the aerocdynamic

operator, Eg. {1), it is convenient to isoclate the

contribution of the wake. This yields

4'”E(P#) @(qu,T) = - #z [q}]@ ‘-L' dZB *
| B
‘ @ | - ® oK
$,, 101 20 (%) (32174 5] 45
o

B 2N

8 {[405]@_2..(__!_)_ [2adL R)az,

s, AN \R aT R 2N

where Z'g is the (closed) surface of the body, while Zw
is the (open) surface of the wake, and zm@ is the
potential-discontinuity across of the wake, evaluated
in the direction of the normal (i.e.A@a @u-@a if the
upper normal is used). It should be noted that the value
of Z,\Cfa} is not an additional unknown, since it can bLe
easily shown from the Bernoulli theorem that (see
Appendix B) - :
AP (PT) = 24P (P, T ﬂ) (20)
where || is the nondimensional time necessary for the
vortex-point to travel {(within the steady flow) from

the point, P (origin of the vortex-line at the trailing

TE
edge}, to the point P.
If small perturbation hypothesis can be used for the

steady state flow, then TT can be approximated by

M= p*(x-X.,)/M ()



Equationé (9) and (10) fully describe the problem of
linearized unsteady subsonic potential aerodynamics
around complex configurations. In order to solve this
problem, it is necessary to obtain a numerical approximation
for Eg, (9). This can be obtained by using for instance
the finite-element method. While other methods can be
used, the finite element one appears to be at present
time the only method sufficiently general and flexible to
be used here. Consider the integrals on EZB first.
Using a typical finité-element representation, it is

possible to write

P(pT-0) £ Y (T-0) M, ()
$(p,7-0): & fr-a)N®

where l_o is the total number ofknodes on the body,
.q{(ji.ca)and éiCT—C{) are time dependent values of P
and CP at the node, 1, at the time T-'@L {where C}-)L is
the disturbance-propagation time from P, to PL);
furthermore ML(P) and NL(P) are prescribed global
shape-functions, obtained by standard assembly of the
element shaée—function (see for instance Ref. 8).

For instance for the hyperboloidal element of Ref., 4 the

element shape functions are

MAE NAE - Zfif(“ é/é“")(” 7/7‘;) (13)

131



where -t4 define the locations of the

3 1
Fal la
corner, & , of the element, E,.

Next consider the integrals on the wake. In order
to facilitate the use of Eg. (10}, it is convenient to
divide the wake into strips defined by (steady-state)
vortex-lines emanating from the nodes on the trailing
edge. The strips are then divided into quadrilateral

elements. The potential discontinuity can then be

expressed as

N, e
AP(P,T-9) = Né A cﬁﬂ(’g-- @N) L, (P) (14)

¥ v
where N is the number of nodes on the wake,AﬁKﬁJ%is the
- I3

value of ;MB at the N-th node on the wake at time

ﬂ}-@u (where iy is the propagation time from P to P*)’

and LN(P} is the global shape function relative to the

N«~th hode_of the wake. Note that according to Eq. (10}
' \ ATE [

AR (T) = ad, ) (T-1 ) .
where M=M(N) identifies the trailing-edge node which is
oﬁ the same vortex-line as the node N. Furthermore }?N
is the fime necessary for the vortex-point to be convected
from the trailing-edge node M to the wake-node N. It
may be worth noting that ¢$<%;£ = ¢lu<-4iL, where
L, and L, identify the upper and lower trailing-edge nodes

on the body corresponding to the M node on the



trailing edge,

Therefore it is possible to write
TE =
mMin) L MRS
where ,S

{16)
o4 . . o
% 1 (ﬂﬁML-ﬂ =) if L identifies the upper
(lower) node of the body corresponding to the N-th node
of the wake,ant %

L:9otherwise.
Combining Egs. (9,

12, and 14) one obtains

2E() S (P T)= 2 B W (T-@)+
s ¢ ¢ (T-e ).z & b(1-9)+
%

C%)é.liik(%:-c%)

-

—

(17}
where;
Bo=- = §r35_a M (P) L 4z,
- & P24
bo--5 5@625 v )L 2R

(18)



and according to Egs.- (15) and (16}
T-G ) = zi » (T-@ -1 )
A@N ( ON L SNL. %L ( N N (19)
Next consider, in particular, that P, coincides with
the node J of the body. In this case E= 1/2 and, using

Eg. (19), Eg. (17) reduces to

—

ST =23 Y (T-0.)+2C $.G-0,)+

L

2D, 4 80 )~ 32 F,8 &(T-8,-N)

AT N T
Zz GJN SML ;:{- CP:. (T— @Ju"nu)
Nk (20}
where
- Y
(BJL ? CJL7 D‘lL) FJ&’ GJN 3 9-3"-) = (BL-'CL iDL 'EJ !GHJQ/IE'-‘F; (21)

Equation {20) indicates the nature of the aerodynamic
operator relating potential and normal-wash as oébtained
by using finite-element representatidn to discretize
the spacial problem. The operator is a linear differ-
ential-difference operator to which the methods of
operational calculus can be applied. However before
considering the Laplace's transform of Egq. (20) it is
convenient toc make some remarks about the contribution

of the wake. It may be noted that, according to Eg. (8),
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é> is identically equal to zero for T<0 thérefore

according to Eq. (15)

S =0 T ¢ Tl )

ALy E ( N (22)
Hence if the analysis is limited to T4 T __, the

contribution of the elements with TTN > Tmax is identically

equal to zero. Therefore the wake can be truncated to
eliminate these elements. It may be noted that those
elements would contribute to the transfer function and
thus to the transform of @ but not to the final solution
in the time domain for T‘iThax' The advantage is not
only that less computational time is used (since less
elements are required) but also that the problem of con-
vergence connected with the infinite wake (factors eﬁsn#
with Real (s} <0 and HN->m:) are bypassed,*

Next by taking the Laplace transform of Egq. (20)

and solving for {@>% one obtains

§ [ “ z.} (23)

* A correct analysis implies the evaluation of the
limit of the present analysis as the number of elements

on the wake goes to infinity.
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where _
~ - 5§,
[AJL] 4 iJ_djL_ CC;K + & Dm) e ° “J—

~4
- 5(@1anﬂ]

’[(Fm +5Gy, ) e J {S_m:J [Bk- e’ Okt} (24)

Equation (22) indicates that the matrix [KJL] is the

e

desired subsonic matrix transfer function relating the

transformed vector of the potential {<§3§ to the trans-

formed vector of the normal-wash gi?HE .
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SUPERSONIC INDICIAL AERODYNAMICS

In this section the formulation for the supersonic
case is briefly outlined. For simplicity only supersonic
trailing edges are consideres so that the contribution
of the wake can be ignored.* Under small perturbation
assumption the Green theorem for pptential-supersonic

flow is given by

4nE(P,) @(P.,,T) - - 4, ([qf]""’l[nm@)% N
$ (w @i@)g%,c £) 4z -
#z.a( a‘r' “ﬁﬁ] ) 7 %_?5“; 42 {25)

where @’::a@/@?” ?ﬁ%ﬁ is the conormal derivative4)
is the conormal-wash,

X=z/gb Y-y/t Z=8/4 ::@F{:/J?czsm
{with B =4m2.t ) and

iz
[(5( X ) - (Y- 7)) - (2- Zg)lj (27)

while ) vz
H= | for X, =X > [(Y—\i}lat(zfza)z} (28)
-0 oo Koo x e [(v-V T2z,
and
. @
[ ] ) { ]'T" - T. ot -
with
O . M(X -X)tR B

* If the trailing edge is not fully supersonic then
the contribution of the wake can be treated similarly
to the subsonic case, with the only difference that the
device of truncating the wake at finite distance is not
necessary in the superscnic case, since only a finite
portion of the wake can have an effect on the aircraft.
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Using Eq. 1125 and following the same procedure used

for the subsonic case one obtains the supersonic indicial

aerodynamic operator

E(p,) 3, 7) = Z B, [‘Pf. (T- @)+ P(r- @;)]ﬁ
C, [CPL(T* ol) SBL (- @;” + (31)

Br L. M (P H g:[
L 27 fjﬁi_g‘ L )"","L;" ZB
¢ . Lo ®) 2 (HVAZ
L = *chg Nl_ura,ﬁc(.ﬁ.,} Ly
(32)
DLl L p)H 2R 43
L - & @za NP2 a2,

In particular if P* coincides with the node J, Eq.
reduces to
$(M=2 8, [§ (T-0)+ ¥ (T-9/)]
I e -3
+ZC [CP(T @ qt)l—*‘g @‘”‘j] (33)
’ -
2 3[4 40-60) 4 0-01]

M - i

where

(31)

) 1
('), 8.0)-8 .c. DMO,L,JL)E}P  em
% - 71

Finally, taking the Laplace transform of Eg. (33} one

obtains

o7 ) § 1)
é ;@3 5 = ! /Qjﬁl] i EHq S (35)
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where

' . OF s@) -1
~ - s ] o JK 1K
[A J{ §p = Ca * s Do (e t e J

N A

| -8 87 s &\ (36)
[, (7% %)

~r 7
Equation (35) indicates that the matrix -r/f\ | is the
L

desired supersonic matrix transfer function relating

—~

the fransformed vector of the potential gc‘bj; to the
transformed vector of the conormal-wash {{P;‘lg , for
supersonic trailing edge configurations. If the trailing
.edge is not fully supersonic, the formulation may be
modified following the same ideas used for the subsonic

case. It may be worth noting that according to Eg. (29)

il o -
YO s @

K .
3 i e - (37)

-sM (XJ - ){k}

= Q €. COS"!’L" {5[(}<],Xk)2‘_(‘]’}3' f)z_(%-gk)zji




-15-

- CONCLUDING REMARKS

A general theory for unsteady compressible potential
aerodynamics has been presented. The motion is assumed
to gonsist of small perturbation starting at time t=0)
around a steady-state constant-velocity motion., In this
case the relationship between the velocity potential
and the normal-wash is given by an integral operator in
space and a differential-difference operator in time.
‘Using the finite element method to solve for the spacial
problem one is left with a differential-difference eguation
in time. This can be solved numerically for time~domain
or by using the Laplace transform and thus obtalning the
matrix transfer function for frequency~domain analysis,

The results presented here represent a considerable
improvement with respect to the formulaticn available
thus far since complex configurations could be analyzed
only for steady and oscillatory flows (see, for inétance,
Refs, 3 and 4) while unsteady flows could be analyzed only
for simple configqurations such as zero-thickness wing with
special planforms. With the method presented here unsteady
flows around complex configurations can be analyzed for
most cases of practical interest. For, the linear equations
of flight dvnamics implies small perturbations around a
steady state motion, usually constant speed horizontal

£flight. The unsteady aerodynamic analysis presented here
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does not require any additional limitation and therefore
is the most general formulation within the above framework,
In addition it should be noted that the increase
in generality of the formulation is obtained at no
additional increase in computational complexity. For,
if simply Qscillatory problems are considered the only
advantage is to replace 4 with ({]l (Ref. 3 and 4),
with no particular computational saving.
Another advantage of the present approach is that

the dependence of the matrix A upon the complex frequency,

JM
s, is given in a very simple explicity analytic form,

This is a considerable computational advantage since once
cC D

the coefficients B and eﬁN have

w’ Caur Porr Faw Conr Swue
'been evaluated (and these are necessary even for the
evaluation of the potential at one single reduced frequency),
it is a trivial matter (essentially the inversion of one
matrix) to obtain the results at different values of s.
 Also advantage can be taken of the analytic dependence

upon s to obtain approximate expressions for the matrix

"3
I A&MJ. For instance, at low frequencies a Taylor series

expansion for Eq. (24) can be taken to yield
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‘ (38)
_r”‘] {CKHO J [DKHJ [FRM K@ )+G;WHSMH] [T;PHBPL]

where S -1
T r

(Lelfad-le] {nls]] e
It is essential to note the difference between the
method presented here and the classical approach for
unsteady (oscillatory) aerodynamics. In this case the
solution is assumed to be oscillatory (i;e. of the type
eurrl and then the problem is solved in space? Here the
problem is solved first in space and then in time. This
inversion of the time and space sclutions might appear to
be irrelevant, but is not. For, in the classical formula-
tion the convergence of the space solution is analyzed on
the time-transformed unknown which is highly oscillating
in space. On the other hand, here the finite-element
method is applied to the untransformed equation, where

the unknown is smooth and therefore
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fewer elements are required for convergence. The transform
applies to the discrete system and therefore high frequency
components do not involve a change in the number of elements.
This question is analyzed-more in detail in Appendik A,
where the Laplace transform is used firét and then the
transformed equation is solved by finite elements. This
process yields Eq. (A.3) which-should be compared to Eq.
{20). Note that the integrals in Eg. (A.4) are not frequency
independent and therefore a large number of elements is
required for convergence. On the other hand the integrals
in Eg. (18) are frequency independent and the convergence
must be evaluated on the time-domain solution.

Another advantage of the present approach is the
already mentioned possibility of truncating the wake at
finite distance if the analysis is limited to TsT__ ..
(since A.f%go for T<T _ < HN}. This eliminates the‘
problem of convergence as the length of the wake goes
to infinity.

other guestions which have not been discussed here
are the Kutta condition and the role of the diaphragms
in supersonic flow. These points are analyzed in Refs.
3 and 4 for a zeroth-order finite-element solution (i.e.
potential, ¢ , and normal-wash,{ , constant within each
element). Further investigations for higher-order

solutions are now under wav.
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In conclusion a new approach for small-perturbation
unsteady aerodynamics has been presented. Taking full
advantage of the finite element method and the operational
calculus the problem is simplified considerably and the
relationship potential-normalwash is reduced to a system
of algebraic equation, with explicit dependence of the

coefficients upon the complex frequency, s .



~20-

APPENDIX A

In this Appendix it is shown how interchanging
the order of the time and space solution, a different
type of eguation is obtained. Taking the Laplace

transform of Eg. (9) one obtains
_5<D

4)7:_.\? C’] 9(—6 -jL 7—-‘_ +

-5 & -
9{%5 %(%)ma_

#) %_seFS@R%@dEB+

3, N
J[ /'*CT) Q_S

z\f" 2N (ﬂ} Al
f Ad e R R 43,
Iy 7N

Next using the finite-element method, i.e. setting

—

D22 b H @)

L
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yields, at P = P

L’ V Laet)
) L TC 1§d l+e[D, 8¢
ECPJJ [Bu]{@,_g +LCJL}2@LS+SLD?LJ2C$);,,
~ I ~ P ’ :r' P
+ [FJN]?é\\Pf\Ji‘{’ 5L13N]2A‘,QT
‘ A.3
where
= -5 ® .
2 e- L& P) odz,
aL [‘ 7 f)%za M e R “le Ly,
! | -5 0 _
=13 P (L1145,
- }'fi %}EB N ) e - (R/ LJL{:P]
-s@ :
= _.i : N rP € g __‘_ _a____ 6’/23-]
DJL“ { 27 J*'EB L( ) R aN f jp* :?J
' -30®
15 L e 2 (L)a ]
T AT
| s@ | IR 4 )
s o= =l M) e L &2 Zw] A
C‘JN !.—-21? f}i'w Ly ) R &N oo

Finally, according to Egs. (15) and (16) one obtains

FEIRVELIE R PR
AR AU HERE N ATV
Combining Egs. (A.3) and{A.5) and solving for g %i%

vields a new expression for the matrix transfer function

[ZJM]:[[SJL - (CJL* s :b.u_ H -

: .1
= - -—5”,1 '5@”’\
P+ s GM[SNL e }‘J [Bm ¢ ]
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Comparison with Eq. (24) indicates clearly the advantage
of using the space-discretization before the time-trans-

formation.
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APPENDIX B

In this Appendix Eq. (10) is derived., Consider
the Bernoulli theorem for potential flow

§f+ 15V¢/-+jii='w”¢

at 2 i (B.1}

Since no pressure difference can exist across the wake,

(Jé Lvé '")u—(afb +-‘?“7’C#!2) =0

o 2 ¢ (B.Z)

Qr

a - ~ oy y . '
2 (- 9)+ L (05 78)- (74, 74 ] 0

then

ot (B.3)
This can be rewritten as
5 (4-6) + LV(8o4). 760 9)<
s - +"' +GD| —_— LS
SR I [Fa+ % o e ) (8. 43
or

D '

it ) (@unqbe)zo

D& (B.5)
where

—

D -2,8.v

Dt ot {B.6)
is the total time derivative obtained by following
a particle having the average velocity.

- ,

. ‘[17*'31&\72,) |
Qa 2\3‘% ¢; (B.7)



Y.

Equation (B.5) implies that the wake vortices are
éimply convected, that is that :
AP(P )= AP (T, , £-7) (B.8)
where I is the time necessary for a point of the wake
to move from a point Pog of the trailing edge to the
peint P, If the unsteady flow is infinitesimal 1 can
be evaluated from the steady state solution. If small
perturbation apply to steady state flow as well, 7 is

given by the distance f—xTE divided by the velocity,(L

Mo (?:—xm)/ v,

Using nondimensional variables (Eg. 2), Egs. (B.8) and

{B.,9)

(B.9) are replaced by Egs. (10) and (11) respectively.
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